Building an Advanced ChatGPT App with Streamlit: A Comprehensive Guide for 2025

  • by
  • 7 min read

In the rapidly evolving landscape of artificial intelligence, creating custom AI applications has become more accessible than ever. This comprehensive guide will walk you through the process of building an advanced ChatGPT app using Streamlit, incorporating cutting-edge features and best practices for 2025.

Why Develop Your Own ChatGPT Application?

As AI continues to reshape industries, there are compelling reasons to build a custom ChatGPT app:

  • Unparalleled Customization: Tailor the interface and functionality to your specific needs, whether for customer service, content generation, or specialized analysis.
  • Enhanced Data Privacy: Maintain full control over conversation data and user information, crucial in an era of increasing data regulations.
  • Cost Optimization: Implement a pay-as-you-go model for API usage, allowing for better budget management and scalability.
  • Seamless Integration: Incorporate the chatbot directly into your existing systems and workflows for maximum efficiency.
  • Improved Accessibility: Bypass potential network restrictions in corporate environments, ensuring consistent access for all users.

Setting Up Your Development Environment

Before diving into development, ensure you have the following tools installed:

  • Python 3.11 or later (3.11 is the recommended version as of 2025 for optimal performance)
  • Streamlit 2.5.0
  • OpenAI Python library 1.5.0

Install the required packages using pip:

pip install streamlit==2.5.0 openai==1.5.0

Building the Core ChatGPT Application

Let's start by creating the foundation of our ChatGPT app using Streamlit.

Basic Chat Interface

Here's the core code to create a simple yet powerful chat interface:

import streamlit as st
from openai import OpenAI

st.title("Advanced ChatGPT Clone 2025")

client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])

if "openai_model" not in st.session_state:
    st.session_state["openai_model"] = "gpt-5-turbo"  # Updated to GPT-5 for 2025

if "messages" not in st.session_state:
    st.session_state.messages = []

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

if prompt := st.chat_input("What would you like to know?"):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    with st.chat_message("assistant"):
        stream = client.chat.completions.create(
            model=st.session_state["openai_model"],
            messages=[
                {"role": m["role"], "content": m["content"]}
                for m in st.session_state.messages
            ],
            stream=True,
        )
        response = st.write_stream(stream)
    st.session_state.messages.append({"role": "assistant", "content": response})

This code establishes a basic chat interface using Streamlit and the OpenAI API, maintaining a conversation history and streaming the AI's responses in real-time.

Enhancing the App with Advanced Features

Now, let's elevate our ChatGPT app with cutting-edge features that set it apart in 2025.

1. Secure API Key Management with Biometric Authentication

In 2025, security is paramount. Let's implement a secure login system with biometric authentication:

import streamlit as st
import json
import os
from biometric_auth import verify_biometric  # Hypothetical biometric authentication library

DB_FILE = 'user_data.json'

def load_user_data():
    if not os.path.exists(DB_FILE):
        return {'api_keys': [], 'chat_history': {}, 'biometric_data': {}}
    with open(DB_FILE, 'r') as file:
        return json.load(file)

def save_user_data(data):
    with open(DB_FILE, 'w') as file:
        json.dump(data, file)

def login_page():
    user_data = load_user_data()
    
    st.title("ChatGPT App Secure Login")
    
    username = st.text_input("Username")
    
    if st.button("Login with Biometrics"):
        if verify_biometric(username):
            st.success("Biometric authentication successful!")
            st.session_state['openai_api_key'] = user_data['api_keys'].get(username)
            st.rerun()
        else:
            st.error("Biometric authentication failed.")
    
    new_key = st.text_input("Enter a new OpenAI API key:", type="password")
    if st.button("Register New Key"):
        if username and new_key:
            user_data['api_keys'][username] = new_key
            save_user_data(user_data)
            st.success("New API key registered successfully!")
        else:
            st.error("Please provide both username and API key.")

if 'openai_api_key' not in st.session_state:
    login_page()
else:
    main_chat_interface()

This advanced login system incorporates biometric authentication for enhanced security, a crucial feature in 2025's privacy-conscious landscape.

2. Dynamic Model Selection with Performance Metrics

As AI models continue to evolve, let's provide users with real-time performance metrics to inform their model selection:

import streamlit as st
from openai import OpenAI
import time

def model_selector():
    models = {
        "gpt-5-turbo": {"speed": "Fast", "accuracy": "Very High", "cost": "$$"},
        "gpt-5": {"speed": "Medium", "accuracy": "Exceptional", "cost": "$$$"},
        "gpt-4-turbo": {"speed": "Very Fast", "accuracy": "High", "cost": "$"}
    }
    
    selected_model = st.sidebar.selectbox("Select AI Model:", list(models.keys()))
    
    st.sidebar.write(f"Model: {selected_model}")
    st.sidebar.write(f"Speed: {models[selected_model]['speed']}")
    st.sidebar.write(f"Accuracy: {models[selected_model]['accuracy']}")
    st.sidebar.write(f"Cost: {models[selected_model]['cost']}")
    
    return selected_model

def measure_performance(model, prompt):
    start_time = time.time()
    response = client.chat.completions.create(model=model, messages=[{"role": "user", "content": prompt}])
    end_time = time.time()
    
    return {
        "response_time": end_time - start_time,
        "token_count": response.usage.total_tokens
    }

st.session_state["openai_model"] = model_selector()

# Display performance metrics after each interaction
if st.session_state.messages:
    last_prompt = st.session_state.messages[-2]["content"]  # User's last message
    performance = measure_performance(st.session_state["openai_model"], last_prompt)
    st.sidebar.write(f"Last Response Time: {performance['response_time']:.2f} seconds")
    st.sidebar.write(f"Tokens Used: {performance['token_count']}")

This feature allows users to make informed decisions about model selection based on real-time performance data.

3. Advanced Conversation Management with Semantic Search

Implement a sophisticated conversation management system with semantic search capabilities:

import streamlit as st
from openai import OpenAI
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

# Initialize the sentence transformer model
model = SentenceTransformer('all-MiniLM-L6-v2')

def save_conversation(title, messages):
    user_data = load_user_data()
    user_data['chat_history'][title] = messages
    save_user_data(user_data)

def load_conversation(title):
    user_data = load_user_data()
    return user_data['chat_history'].get(title, [])

def semantic_search(query, conversations, top_k=5):
    query_embedding = model.encode([query])
    conversation_embeddings = model.encode([' '.join([m['content'] for m in conv]) for conv in conversations.values()])
    
    similarities = cosine_similarity(query_embedding, conversation_embeddings)[0]
    top_indices = np.argsort(similarities)[-top_k:][::-1]
    
    return [list(conversations.keys())[i] for i in top_indices]

def conversation_manager():
    st.sidebar.title("Conversation Manager")
    
    new_chat = st.sidebar.button("New Chat")
    if new_chat:
        st.session_state.messages = []
        st.session_state.current_chat = None
    
    user_data = load_user_data()
    chat_history = user_data['chat_history']
    
    search_query = st.sidebar.text_input("Search conversations:")
    if search_query:
        relevant_chats = semantic_search(search_query, chat_history)
        selected_chat = st.sidebar.selectbox("Relevant Chats:", relevant_chats)
    else:
        selected_chat = st.sidebar.selectbox("Load Previous Chat:", list(chat_history.keys()))
    
    if selected_chat and selected_chat != st.session_state.get('current_chat'):
        st.session_state.messages = load_conversation(selected_chat)
        st.session_state.current_chat = selected_chat
    
    if st.session_state.messages:
        chat_title = st.sidebar.text_input("Save current chat as:", st.session_state.get('current_chat', ''))
        if st.sidebar.button("Save Chat"):
            save_conversation(chat_title, st.session_state.messages)
            st.success(f"Chat saved as '{chat_title}'")
            st.session_state.current_chat = chat_title

conversation_manager()

This advanced conversation management system uses semantic search to help users quickly find relevant past conversations, greatly enhancing the user experience.

4. Multi-Modal Interactions

In 2025, AI models are capable of processing multiple types of input. Let's add support for image and audio inputs:

import streamlit as st
from openai import OpenAI
from PIL import Image
import speech_recognition as sr

def process_image(image):
    client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])
    response = client.chat.completions.create(
        model="gpt-5-vision",
        messages=[
            {"role": "user", "content": [
                {"type": "text", "text": "What's in this image?"},
                {"type": "image_url", "image_url": {"url": image}}
            ]}
        ]
    )
    return response.choices[0].message.content

def process_audio(audio_file):
    recognizer = sr.Recognizer()
    with sr.AudioFile(audio_file) as source:
        audio = recognizer.record(source)
    try:
        text = recognizer.recognize_google(audio)
        return text
    except sr.UnknownValueError:
        return "Speech recognition could not understand the audio"
    except sr.RequestError:
        return "Could not request results from the speech recognition service"

st.title("Multi-Modal ChatGPT Interface")

input_type = st.radio("Choose input type:", ["Text", "Image", "Audio"])

if input_type == "Text":
    user_input = st.text_input("Enter your message:")
elif input_type == "Image":
    uploaded_file = st.file_uploader("Choose an image...", type="jpg")
    if uploaded_file is not None:
        image = Image.open(uploaded_file)
        st.image(image, caption='Uploaded Image.', use_column_width=True)
        user_input = process_image(uploaded_file)
else:  # Audio
    audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
    if audio_file is not None:
        user_input = process_audio(audio_file)

if user_input:
    st.session_state.messages.append({"role": "user", "content": user_input})
    # Process with ChatGPT as before

This multi-modal interface allows users to interact with the AI using text, images, or audio, showcasing the versatility of AI in 2025.

Optimizing Performance and User Experience

To ensure our ChatGPT app runs smoothly and provides an exceptional user experience in 2025, we'll implement the following optimizations:

1. Advanced Caching with Redis

import streamlit as st
import redis
import pickle

redis_client = redis.Redis(host='localhost', port=6379, db=0)

@st.cache_data
def get_cached_response(prompt, model):
    cache_key = f"{prompt}:{model}"
    cached_response = redis_client.get(cache_key)
    if cached_response:
        return pickle.loads(cached_response)
    return None

def set_cached_response(prompt, model, response):
    cache_key = f"{prompt}:{model}"
    redis_client.setex(cache_key, 3600, pickle.dumps(response))  # Cache for 1 hour

# Use in main chat loop
response = get_cached_response(prompt, st.session_state["openai_model"])
if not response:
    response = generate_ai_response(prompt, st.session_state["openai_model"])
    set_cached_response(prompt, st.session_state["openai_model"], response)

This caching system uses Redis for fast, distributed caching of AI responses, significantly reducing response times for repeated queries.

2. Robust Error Handling with Automatic Retry

import streamlit as st
from openai import OpenAI
import time
import traceback

def generate_ai_response_with_retry(prompt, model, max_retries=3):
    client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])
    for attempt in range(max_retries):
        try:
            response = client.chat.completions.create(
                model=model,
                messages=[{"role": "user", "content": prompt}],
                timeout=10  # Set a timeout for the API call
            )
            return response.choices[0].message.content
        except Exception as e:
            if attempt < max_retries - 1:
                st.warning(f"Error occurred: {str(e)}. Retrying in 5 seconds...")
                time.sleep(5)
            else:
                st.error("Failed to generate response after multiple attempts.")
                st.error(traceback.format_exc())
                return "I'm sorry, but I'm having trouble responding right now. Please try again later."

# Use in main chat loop
response = generate_ai_response_with_retry(prompt, st.session_state["openai_model"])

This error handling system automatically retries failed API calls and provides informative feedback to users, ensuring a smooth experience even when issues occur.

3. Adaptive Streaming for Low-Latency Responses

import streamlit as st
from openai import OpenAI
import asyncio

async def adaptive_streaming_response(prompt, model):
    client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])
    stream = client.chat.completions.create(
        model=model,
        messages=[{"role": "user", "content": prompt}],
        stream=True
    )
    
    response_placeholder = st.empty()
    full_response = ""
    chunk_size = 10  # Start with small chunks
    
    async for chunk in stream:
        if chunk.choices[0].delta.content is not None:
            full_response += chunk.choices[0].delta.content
            if len(full_response) >= chunk_size:
                response_placeholder.markdown(full_response)
                chunk_size *= 2  # Increase chunk size for faster streaming
                await asyncio.sleep(0.05)  # Small delay to allow for smooth updates
    
    response_placeholder.markdown(full_response

Did you like this post?

Click on a star to rate it!

Average rating 0 / 5. Vote count: 0

No votes so far! Be the first to rate this post.